
1

ASEBA: A Modular Architecture for Event-Based
Control of Complex Robots

Stéphane Magnenat, Student Member, IEEE, Philippe Rétornaz, Michael Bonani, Valentin Longchamp,
Francesco Mondada, Member, IEEE

Abstract—We propose ASEBA, a modular architecture for
event-based control of complex robots. ASEBA runs scripts inside
virtual machines on self-contained sensor and actuator nodes.
This distributes processing with no loss of versatility and provides
several benefits. The closeness to the hardware allows fast
reactivity to environmental stimuli. The exploitation of peripheral
processing power to filter raw data offloads any central computer
and thus allows the integration of a large number of peripherals.
Thanks to scriptable and plug-and-play modules, ASEBA provides
instant compilation and real-time monitoring and debugging
of the behavior of the robots. Our results show that ASEBA
improves the performance of the behavior with respect to other
architectures. For instance, doing obstacle avoidance on the
marXbot robot consumes two orders of magnitude less bandwidth
than using a polling-based architecture. Moreover, latency is
reduced by a factor of two to three. Our results also show how
ASEBA enables advanced behavior in demanding environments
using a complex robot, such as the handbot robot climbing a
shelf to retrieve a book.

Index Terms—Intelligent actuators, Intelligent sensors, Micro-
controllers, Mobile robots

I. INTRODUCTION

The complexity of mobile robots is continuously increasing.
The rise in sensor quality and quantity is necessary to provide
rich and diversified inputs to the increasingly sophisticated
perception algorithms that research explores [1]–[3]. These
algorithms in turn demand large computational power, which
requires highly capable hardware [4]. In the field of miniature
mobile robots, where space and energy are limited, one
cannot integrate laptop-level processors or energy-hungry field
programmable gate arrays (FPGA). One must thus exploit
hardware architecture where powerful but energy-efficient
processors from the smartphone industry provide a central
embedded computer, while microcontroller-based peripheral
nodes manage actuators and sensors in real time [5], [6]. A
good example of such a robot is the s-bot [7].

However, this hardware architecture poses a scalability
problem. While the real-time management of sensors and actu-
ators is distributed, the control architecture is still centralized
(Fig. 1). The robot controller runs in the central computer

This work was supported by the Swarmanoid and the Perplexus projects,
which are funded by the Future and Emerging Technologies programme (IST-
FET) of the European Community, under grants IST-022888 and IST-034632.
The information provided is the sole responsibility of the authors and does
not reflect the Community’s opinion. The Community is not responsible for
any use that might be made of data appearing in this publication.

S. Magnenat is the corresponding author (email: stephane at magnenat dot
net). All authors are affiliated with Mobots group - LSRO - École Polytechnique
Fédérale de Lausanne (EPFL), Station 9 - CH-1015 Lausanne - Switzerland,
Fax: +41 21 693 38 66 (email: firstname dot lastname at epfl dot ch)

single

processor

sensors/

actuators

(a) centralized mechatronics, centralized control

sensors/

actuators

sensors/

actuators

sensors/

actuators

central

embedded

computer

microcontroller

microcontroller

microcontroller

(b) distributed mechatronics, centralized control

sensors/

actuators

sensors/

actuators

sensors/

actuators

central

embedded

computer

microcontroller

microcontroller

microcontrolleroptional

(c) distributed mechatronics, distributed control

Fig. 1: Different hardware and control architecture paradigms.
ASEBA falls in category (c).

and reads sensors, processes the data, and sets actuators at
regular intervals. In particular, the central computer must
manage all read and write operations, and these must transit
through a communication bus. The robots thus suffer from bus
overloading and excessive latency to basic external stimuli,
which limits the robots’ speed of operation.

To solve these problems, we must distribute the controller as
well, at least partially. In particular, we must filter information
in the sensors themselves, and dispatch it to the rest of the robot
only if and when the information is relevant to the application.
This requires a shift in the behavior control paradigm: we must
do event-based communication at the microcontroller level
instead of polling hardware devices from the central computer.
This shift in paradigm implies the definition of a set of new
concepts within a new architecture. We have developed such
an event-based distributed architecture called ASEBA.

In this article, we present the deployment of ASEBA in
the handbot (Fig. 5) and the marXbot (Fig. 8), two complex
miniature mobile robots that we have recently developed. Using

http://stephane.magnenat.net
http://www.swarmanoid.org
http://www.perplexus.org/
http://mobots.epfl.ch/
http://lsro.epfl.ch/
http://www.epfl.ch/
http://www.epfl.ch/


2

the handbot, we show that a behavior as complex as climbing a
shelf can be implemented using ASEBA only (Sec. IV). Using
the marXbot, we show that ASEBA improves the performance of
the behavior with respect to a polling-based approach (Sec. V).
We have previously presented the concept of ASEBA driving a
robot in a simulator [8], the use of the ASEBA language for
education [9], and the use of ASEBA to control a collection
of single-microcontroller robots [10]. However, this paper is
the first report of quantitative validations of ASEBA on multi-
processors robots. ASEBA is open source (GPL v.3), and the
community can use it and modify its source code free of charge.
More information as well as the latest version are available at
http://mobots.epfl.ch/aseba.html.

II. RELATED WORK

The idea of distributing data processing to the sensors
themselves was first explored by [11] almost 20 years ago.
However, this work approached the question from a theoretical
perspective and did not propose any concrete implementation.
To do so, one must consider a complete hardware architecture,
including a specific communication bus. In mobile robots, a
good candidate is the CAN bus, as shown by several works
that take advantage of its multi-master capabilities to let the
sensors send data at some pre-defined [12] or adaptive [13]
rate. ASEBA improves on these by providing an event-based
architecture where the event emission policy is controlled by
virtual machines (VM) inside microcontrollers. Previous work
has shown that a VM can be lightweight enough to run even
on tiny robots [14].

The event-based approach to multi-process communication
has been extensively studied in general-purpose middleware lit-
erature [15]. Early theoretical works have shown the importance
of strongly typing events [16]. More recent work has focused
on using this type information to route events efficiently [17]. In
the context of robotic applications, researchers have developed
much middleware, and a fair number are capable of event-based
communication. They all exhibit the same basic structure: a
software architecture where distributed components interact
through a communication layer. One of the main differences
lies at the level of the communication layer: Orin [18] uses
HTTP; Miro [19] and RtMiddleware [20] use CORBA; Orca uses
Ice [21] while Orocos [22] and DCA [23] provide their own
layers. Some provide additional features, such as Orocos, which
provides a library to do Bayesian filtering, kinematics, and
dynamics computation. Orccad [24] is a noteworthy approach
that provides an integrated tool to build a behavior and prove
its real-time constraints. Despite the diversity, these examples
of middleware are all component-based architectures that run
on one or more central computers, not on microcontrollers.
These architectures thus suffer from the same bandwidth and
latency problems as any polling-based system.

The need for a deeply embedded behavior control ar-
chitecture has been recognized by researchers working on
complex robots, such as robots with many degrees of freedom
like modular self-reconfigurable robots [25]. In particular,
researchers acknowledge the interest in defining an emission
policy per microcontroller but stress its difficulty: “On the

microcontroller

microcontroller

microcontroller

central embedded

computer

desktop

computer

high−level control

program

software switchIDE

optional optional

(a) a typical ASEBA network

shared communication bus

microcontroller

actuators

communication

native functions

low−level control

virtual machine

sensors

application−specific

program

(b) a microcontroller in an ASEBA network

Fig. 2: ASEBA in miniature mobile robots.

other hand, we could have all modules acting both as masters
and slaves, letting the roles be determined at run time. Such a
design would be very robust and flexible, if it works. However,
our experience shows that the code would be very complex and
difficult to debug” [26, Sec. 4]. We think that the cause of these
problems is the lack of proper integration of the development
and debugging process in the architecture itself. Indeed, to
develop a complex behavior easily, one must be able to quickly
perform trial-and-error experiments and to inspect what is
happening inside the different elements of the system. Most
architectures neglect this aspect and require a recompilation
and reflashing of all the microcontrollers for any change in the
controller code. On the contrary, ASEBA emphasizes efficient
development tools and provides an integrated development
environment (IDE) that allows instant changes in the behavior
of the microcontrollers by loading new code to the VMs. This
flexibility allows us to delegate higher-level functions to the
microcontrollers, not only low-level hardware management.
For instance, we can implement subsumption architectures [27]
directly inside the microcontrollers. In the more demanding
context of three-layer architectures [28], we can run the
controller layer on the microcontrollers, which frees the central
computer and allows it to concentrate on the sequencer and
the deliberative layers.

III. ASEBA

A. Distributed, Event-based Architectures

ASEBA is a modular, distributed, and event-based architec-
ture, that is, a network of computers in which communication
is asynchronous. All nodes send events and react to incoming
events. An event consists of an identifier and payload data. In
a small mobile robot, most of the nodes are microcontrollers,

http://mobots.epfl.ch/aseba.html


3

polling

event

events transmission
actuators data transmission

2 3

1

reaction time
new situation
processing

cycle cycle

event

polling

1

sensors data transmission

x

Fig. 3: A time-oriented comparison of polling versus events-
based systems. (1) a central computer processing all sensors,
(2) a microcontroller processing its local sensors, (3) a micro-
controller processing the incoming event and setting actuators.
Because processing is done locally in the microcontrollers,
only useful data are transmitted, and the transfer occurs
asynchronously. Thus bus load and reaction time are both
reduced when using events.

and the communication layer can be any bus that is multi-
master–capable. In our robots, we use the CAN bus [29] that
provides this feature. In addition, the robots optionally embed
a central computer, typically running Linux. In that case, a
software switch extends the communication bus to local TCP/IP
connections but also to any remote host. This also allows the
developer to connect an IDE from a desktop computer (Fig. 2a).

Asynchronous events allow any microcontroller to transmit
data when it wishes to. A basic behavior thus does not require
a central computer. If one is present, it can delegate the
management of reflexes to the microcontrollers and concentrate
on high-level processing tasks, such as vision or cognition. A
sensor would typically emit an event only when some relevant
elements of information are available. For instance, a distance
sensor could emit an event when an obstacle becomes closer
than a certain threshold, and only when this transition occurs.
The distribution of processing tasks to the microcontrollers thus
reduces the load on the communication bus with respect to a
polling-based architecture (Fig. 3, Sec. V-A). Moreover, when
compared to polling with a fixed frequency, asynchronous
events also decrease the latency, which improves the robot
reaction time (Sec. V-B).

B. Events and Control

The choice of which event to send depends on the robot
behavior: A robot engaged in obstacle avoidance would not
need the same events as a robot following walls. Therefore, the
behavior developer must be able to change the event control
code easily; it must not be frozen in the firmware. In ASEBA,
this flexibility is implemented by splitting the microcontroller
code into two parts (Fig. 2b).

Proximity sensors microcontroller:
var vectorX[24] = -254, -241, ...
var vectorY[24] = -17, -82, ...
var threshold = 600
var activation

onevent sensors.updated

call math.dot(bumpers, vectorX, event.args[0], 0)
call math.dot(bumpers, vectorY, event.args[1], 0)
call math.dot(event.args[0..1], event.args[0..1],
activation, 0)

if activation > threshold then
emit ObstacleDetected event.args[0..1]

end
when activation <= threshold do

emit FreeOfObstacle
end

Left motor microcontroller:
speed = 50

onevent ObstacleDetected
speed = 50 + event.args[0] - event.args[1]

onevent FreeOfObstacle
speed = 50

Right motor microcontroller:
...
speed = 50 + event.args[0] + event.args[1]
...

Listing 1: Example of ASEBA script implementing obstacle
avoidance on a marXbot robot using potential fields. The
event.args array corresponds to the payload data of the
event.

First, sensor readings (for example, generating the timings
for an infrared sensor), actuator low-level control (for example,
the PID controller of a motor), and the communication layer are
implemented in native code on the microcontrollers. This allows
real-time, interrupt-driven handling of hardware resources.

Second, application-specific programs that control the events
emission and reception policy run in a VM on the microcon-
trollers (Fig. 2b in the invert video). They are compiled out
of a simple scripting language, which provides the necessary
flexibility to allow the application developer to implement the
event-based behavior.

C. Language

In ASEBA, we describe the robot behavior and the events
emission and reception policy in a scripting language. The
reception of an event triggers the execution of the associated
part of the script, if any. The event can come from another
microcontroller through the communication bus or from an
internal peripheral of the microcontroller running the script.
This association of code with events frees the programmer
from managing the moments of execution of code.

Syntactically, the ASEBA language resembles MATLAB
scripts; semantically, it is a simple imperative programming
language with arrays of 16-bit signed integers as the only
data type. Sensors’ values and actuators’ commands are seen
as normal variables, which enables seamless access to the
hardware. In addition to the usual if conditional, the ASEBA



4

language provides the when conditional, which is true when
the actual evaluation of the condition is true and the last was
false. This allows the execution of a specific behavior when a
state changes, for instance, when an obstacle is closer than a
threshold distance. To structure the code, the programmer can
define subroutines that can be called from any subsequent code.
To perform heavy computations, such as signal processing,
microcontrollers provide native functions implemented in C
or assembler. By default, a standard library provides vector
operations and trigonometric functions.

Listing 1 shows an example of code that implements obstacle
avoidance using potential fields. This code emits events only
when it detects an obstacle and sends a preprocessed value
instead of the sensors’ raw values. To do so, the code uses
the math.dot native function to compute the value to send
and the when conditional to emit it only when the activation
exceeds a threshold.

D. Integrated Development Environment

The efficiency of the development of a mobile robot behavior
depends on easy inspection of what is happening inside the
robot. In particular, we would like to inspect the values of the
sensors, the state of the actuators, and the program execution
flow. In an event-based architecture, we would also like to
monitor the events that transit over the communication bus.

ASEBA provides an IDE that fulfills these requirements
(Fig. 4). It communicates with microcontrollers through special
events. For each microcontroller, the IDE provides a tab with
the list of variables, a script editor, and debug controls. The
variables’ names and sizes are dynamically enumerated from the
microcontroller. The list of variables also allows the real-time
edition of the values of the sensors, the actuators, and the user-
defined variables. The script editor provides syntax highlighting
and on-typing compilation, that is, the editor compiles script
into bytecode while the programmer is typing it and marks
errors visually. If the script is free of compilation errors, the
programmer can run it on the microcontroller in two clicks.
An events log displays all the normal events and their data
in real time. A distributed debugger lets the programmer set
breakpoints and control the execution state of each node, for
instance, to do step by step inside the script. If the bytecode
on a microcontroller performs an illegal operation, such as
division by zero, its execution is halted, and the faulty line is
highlighted in the script editor of the corresponding tab. The
microcontrollers run one separate debugger core each, but the
IDE shows a unified interface to them. Thanks to these features,
the IDE allows seamless development and debugging of all
nodes in the network from a single place.

E. Virtual Machines

The ASEBA IDE compiles scripts into bytecode and loads
them to the nodes through the communication bus. The nodes
execute the bytecode in a lightweight VM. The use of a
VM instead of native code ensures safe execution because
no script mistake can disturb the low-level operations of the
microcontrollers. For instance, if an array is accessed out of
bounds, the VM will detect it and stop the execution of the

faulty event. Moreover, the VM provides independence toward
the microcontroller’s vendor, as any 16-bit microcontroller or
better suffices to run it. The VM can also write the bytecode
into flash memory to run ASEBA code when the IDE is absent.

The overhead of the VM with respect to native code is accept-
able in modern microcontrollers (Sec. V-C). In our dsPIC33
implementation, the compiled VM consumes 10 kB of flash
memory and 4 kB of RAM, including all communication buffers.
In demanding situations, we can shrink these requirements by
adjusting the amount of bytecode and variable data, stack size,
and number of breakpoints.

Moreover, the use of the ASEBA VM might even increase the
performance of an application when compared to a C code from
a lambda user. Indeed, the ASEBA VM provides native functions
that efficiently compute common mathematical operations
such as the dot product. As modern microcontrollers contain
optimized instructions for such computations, carefully written
native functions are faster than a naive C implementation.
For instance, on the dsPIC, a dot product over 100 elements
programmed in C and compiled with maximum optimization
runs in 871 cycles.1 The corresponding ASEBA native function,
which uses the multiply and accumulate instruction, runs in
320 cycles.

Finally, the VM is easy to understand and thus easy to adapt
and optimize. Its source code counts fewer than 1000 lines of
C, including the debugger core.

IV. APPLICATION TO COMPLEX MECHATRONICS

This section presents the application of ASEBA to a complex
mechatronic system, the handbot climbing robot (Fig. 5). We
show how ASEBA provides distributed control for a tightly
integrated behavior involving multiple degrees of freedom.
The handbot climbs a shelf and retrieves a book. To help
when climbing, the handbot uses a rope to compensate for the
gravity force. The handbot launches the rope before climbing
using a strong spring and a rolling mechanism. The details of
the handbot, in particular the rope-launching mechanism, are
available in [30].

The handbot uses four microcontrollers to climb a shelf. To
move, the handbot rotates its arms with respect to its body in
alternate directions (Fig. 5). Every 180 degrees, the free gripper
attaches to the vertical board, and the other grip is released.
The handbot repeats this sequence until the handbot reaches the
height of the book, where the free gripper takes the book. Then
the handbot detaches its second gripper and goes back down
freely lying at the rope (Fig. 6). Each high-level, conceptual
event such as alternating the attached grippers translates into
series of concrete events that transit over the communication
bus. For instance, to attach the left gripper and detach the right
one, the microcontrollers exchange seven events (Fig. 7).

Thanks to ASEBA, we managed to implement, debug, and
test the controller for climbing a shelf in less than two days.
In particular, the IDE proved its usefulness by allowing us to
inspect the values of the sensors and monitor the events in real
time. The integrated debugger, through its step-by-step mode,
allowed us to easily debug the finite state machines controlling

1C30 3.11, based on gcc 4.0.3, -O3 optimization flag



5

Fig. 4: Screenshot of the ASEBA IDE.

the actions of each microcontroller. Moreover, by allowing us to
process information locally—for instance, the gripper decides
itself to close when it senses the board—ASEBA enabled the
distribution of the complex shelf-climbing behavior. As a result,
the handbot is able to climb without a central computer.

V. APPLICATION TO A MINIATURE MODULAR ROBOT

This section presents the application of ASEBA to a miniature
modular robot, the marXbot (Fig. 8). We show experiments and
measurements that demonstrate quantitatively the advantages
of ASEBA. The base of the marXbot is a differential wheeled
robot 17 cm in diameter with two wheels and two tracks.
It is a robust, high-performance foundation for application-
specific extensions. This base embeds three microcontrollers
and provides a ring of infrared proximity sensors, infrared
ground sensors, a three-dimensional accelerometers, an RFID
reader, and a 40 Wh battery.

A. Bandwidth Reduction by Preprocessing

In this experiment, we show that ASEBA, by transmitting
only relevant data, consumes two orders of magnitude less
bandwidth than a polling-based approach. We measure the
amount of data that ASEBA requires to implement obstacle
avoidance on the marXbot using the 24 proximity sensors at
67 Hz for 1 minute. We repeat this test 120 times. We do
so for 3 environments of different complexities, as shown in
Fig. 9. We compare these measures to the requirements of a

polling-based approach, which are the following:

b = f · ((sensors data) + 2 · (motor commands))
⇔ b = f · ((C · S +O) + 2 · (S +O))

where b is the required bandwidth, f is the frequency of polling
(10, 25, and 67 Hz), C is the number of sensors (24), S is the
number of bytes to transmit per value (2), and O is the packet
header overhead (source identifier + ASEBA packet type, 3).

The measures in Fig. 9 show that, even in the most complex
environment, the median bus load is 193 times lower using
ASEBA than using a polling-based approach. In the worst
case, ASEBA is still 179 times more efficient. This excellent
performance is due to the filtering that ASEBA scripts perform
on the raw data inside the microcontrollers. Moreover, thanks
to the use of scripting and VMs, the robot application developer
can adapt the filtering code to each scenario to maximize the
bandwidth savings. Fig. 10 illustrates visually the variance
of the bandwidth consumption with respect to the robot’s
location. The latter is proportional to the number of obstacles
encountered by the robot.

While the savings are significant for the sensors of the
marXbot base, we expect them to be even higher in the case
of high-bandwidth sensors such as sound source detection,
vision-based features detection, or laser scanners. For instance,
the dsPIC microcontroller that we use is powerful enough
to process sound in real time, and thus, through the use of
native functions, ASEBA could process sound from several
microphones and report the direction of the incoming sound.



6

back viewtop view

gripper (left + right)

− 2 motors (rotation + grasping)

− 12 infrared sensors

head

− 2 motors (arms bending)

body

− 1 motor (head rotation)

C
A

N
 c

o
m

m
u
n
ic

a
ti

o
n
 b

u
s

2x

Fig. 5: The handbot robot, its degrees of freedom, and the
distribution of functions between its microcontrollers for
climbing a shelf. We have omitted the degrees of freedom,
microcontrollers, sensors, and actuators for other operations
such as launching the rope.

B. Low Latency for Fast Reactions

In this experiment, we show how ASEBA can reduce the
latency between perception and action with respect to a polling-
based approach. We show how a faster reaction allows the
robot to stop at a larger distance from an obstacle.

The experimental setup is simple: the robot goes straight on
a flat surface at 150 mm/s and stops when the front proximity
sensors detect an obstacle at a distance less than or equal to
30 mm. We then measure the distance to the obstacle where
the robot has finally stopped.

The measures in Fig. 11 show that the event-based control
of ASEBA allows the robot to stop precisely at a long distance
of the obstacle. In comparison, doing polling at the sampling
frequency of the sensors, 67 Hz, results in a distance slightly
smaller and more variable. We attribute this to the delay of the

Fig. 6: High-level events of a handbot climbing a shelf to
retrieve a book. The burgundy lines show the traces of the
grippers. The sequence of events is as follows: (1) the right
gripper attaches, the head rotates clockwise; then alternatively
(2) the left gripper attaches, the right gripper detaches, the head
rotates counterclockwise; (3) the right gripper attaches, the left
gripper detaches, the head rotates clockwise; and finally (4)
the left gripper takes the book, the right gripper detaches, the
robot goes down using the rope.

left gripper

head

right gripper

body
1

63

2

4
5

2 7

Fig. 7: Low-level events of a handbot attaching its left gripper
and detaching its right one. The sequence of events is as
follows: (1) the left gripper detects a vertical board; (2) the
body requests the head to extend the left arm; (3) when the left
gripper is close enough to the board, the left gripper instructs
the head to stop extending the left arm; it begins grasping the
board; (4) when the left gripper has firmly grabbed the board,
the left gripper informs the head; (5) the head requests the
right gripper to detach; (6) the right gripper informs the head
that the gripper is not grasping the board any more, and the
head retracts the right arm; (7) the head informs the body that
the right arm is detached.



7

left track

− 1 motor (track)

− 2 infrared sensors (ground)

right track

− 1 motor (track)

− 2 infrared sensors (ground)

infrared sensors

− 24+8 infrared sensors (ring + ground)

C
A

N
 c

o
m

m
u
n
ic

a
ti

o
n
 b

u
s − 3D accelerometers

− RFID reader

− battery monitoring

Fig. 8: The base of the marXbot robot and the distribution of
functions between the microcontrollers.

(a) empty environment (b) boxes environment (c) walls environment

empty boxes walls 10 Hz 25 Hz 67 Hz

da
ta

 tr
an

sm
itt

ed
 fo

r 
1 

m
in

ut
e

100 B

1 kB

10 kB

100 kB

1 MB

event−based polling

Fig. 9: Measurement of bandwidth consumption. We performed
this experiment in three different environments. The box plot
shows the bus load in these along with the theoretical values
for polling.

Fig. 10: Bandwidth consumption with respect to the robot’s
location in the wall environment (Fig. 9c). The width of the
white line is proportional to the bandwidth consumption.

150 mm/s

250 mm

(a) initially

d

(b) once stopped

polling 10 Hz

distance [mm]

F
re

qu
en

cy

5 10 20 30

0
10

20
30

polling 25 Hz

distance [mm]

F
re

qu
en

cy

5 10 20 30

0
10

20
30

polling 67 Hz

distance [mm]

F
re

qu
en

cy

5 10 20 30

0
10

20
30

event−based

distance [mm]

F
re

qu
en

cy

5 10 20 30

0
10

20
30

Fig. 11: Measurement of latency. The robot moves toward
a wall at the speed of 150 mm/s starting from a distance of
250 mm (a). When the robot’s front sensors detect the wall
at a distance closer than 30 mm, the robot stops. We then
measure the distance d to the wall (b). The histograms show
the distribution of d.



8

transmission of the read command and to its aliasing with the
update of the sensors values. When the frequency of the polling
decreases to 25 Hz, the stop distance is clearly smaller and
more variable. These effects are even more visible when polling
at 10 Hz. These results show that the event-based control of
ASEBA provides a reaction to input stimuli of lower latency
than a polling-based control. This allows the robot to optimize
its speed while operating safely.

C. Virtual Machine

The VM of ASEBA achieves respectable performance, even
if we have not yet micro-optimized the VM for speed. We
measured that the delay for an idle VM to react to an incoming
event by sending an outgoing event, without any further
processing, is 25 µs. This value will, however, slightly increase
with the amount of event handling code, as the VM must find
the address of the specific event in a table.

If we add a for loop that does an addition operation 100
times, the delay between an incoming event and the resulting
outgoing one is 1.71 ms. Such a loop executes around 1000
VM instructions, which results in a VM performance of about
600,000 instructions per second. The microcontroller that we
use, the dsPIC, runs at an instruction rate of 40 MIPS. This
implies that the VM executes 70 dsPIC instructions per VM
instruction.

The VM provides native functions for mathematical opera-
tions on arrays. Using such functions to perform 100 additions
between the incoming and the outgoing events results in a
delay of 60 µs.

VI. LESSONS LEARNED AND FUTURE WORKS

The development of our robots taught us that the shared
communication bus and its use are critical for the performances.
ASEBA solves the bus overloading problems by filtering raw
data inside the microcontrollers. We could further improve
the scalability of ASEBA by segmenting the bus. Indeed, the
compiler knows the source and destinations of all events. So
the compiler could create routing tables such that events do
not transit over segments of the bus that contain no destination.
This does not apply to multi-master buses such as CAN, but
would be of great interest for custom-tailored systems, such
as the ones based on FPGA.

Our results show that a safe, event-based scripting language
is a sound approach to the programming of real-time embedded
systems. This fact provides insight into the question of scripting
from a computer science point of view [31]. We could further
increase the performances of ASEBA. Indeed, we could improve
the compiler so that it proves more facts about the program.
For instance, the optimizer could remove the boundary checks
on array access in most cases. We could add timing analysis
to prove that events would execute within a specified duration.
In computer science, the field of research known as functional
reactive programming proposes a theoretical approach to such
challenges [32]. It would be interesting to explore whether and
how the latter would apply to networks of microcontrollers.
This would require a complete re-engineering of the language.
Without such a radical redesign, we could still improve the

language of ASEBA. It is currently limited by its data types,
which consist only of 16-bit integers and arrays. We could
extend it by adding more basic types (floating point values,
32-bit integers, . . . ) and arbitrary data structures. However,
we must be careful when considering features that limit
predictability, such as dynamic memory allocation. These could
decrease the performance and the reliability of ASEBA in real-
time applications.

We have discussed ASEBA in the context of miniature
robots, but the results that we present apply to larger robots—
or to industrial installations—as well. In these contexts, the
distribution of the processing could also improve energy
efficiency, because useless data are pruned early. As an
additional benefit, an event-based approach could enable the
creation of a failsafe behavior by using redundant hardware
modules, as [11] showed.

VII. CONCLUSION

The experimental performances of ASEBA running in physi-
cal robots demonstrate that a modular, distributed, and event-
based architecture is a pertinent solution to program the
behavior of multi-processors’ embedded systems.

Moreover, our results show that applying such architecture
for low-level control improves complex robots in multiple ways.
The closeness to the hardware allows fast reactivity to environ-
mental stimuli. The exploitation of peripheral processing power
provides scalability by filtering raw data and by implementing
reflex-like control locally. This provides better behavioral
performances for a given hardware and allows a smaller,
cheaper, and less energy-consuming hardware to be used
for equal performances. The exploitation of microcontrollers’
processing power also offloads the central computer, when it
is present. This leaves time for cognitive tasks such as path-
planning or reasoning. Finally, the interactive IDE permits an
efficient development process.

For all these reasons, ASEBA enables us to build more
complex, more integrated, and smarter robots with today’s
hardware. We think that the latter characteristics are of premium
importance to trigger a large-scale deployment of mobile robots
in the real world.

ACKNOWLEDGMENT

We thank the three anonymous reviewers as well as the
editors for their insightful comments. We thank Daniel Burnier
and Florian Vaussard for their work on the marXbot; and
Tarek Baboura for his work on the handbot. We also thank
Daniel Roggen and Cyrille Dunant for their comments on the
manuscript.

REFERENCES

[1] R. Siegwart and I. Nourbakhsh, Introduction to Autonomous Mobile
Robots. MIT Press, 2004.

[2] S. Thrun, “Probabilistic robotics,” Commun. ACM, vol. 45, no. 3, pp. 52–
57, 2002.

[3] P. Newman, D. Cole, and K. Ho, “Outdoor SLAM using visual appearance
and laser ranging,” in IEEE International Conference on Robotics and
Automation, pp. 1180–1187, IEEE Press, 2006.



9

[4] H. Liu, P. Meusel, G. Hirzinger, M. Jin, Y. Liu, and Z. Xie, “The
modular multisensory dlr-hit-hand: Hardware and software architecture,”
Mechatronics, IEEE/ASME Transactions on, vol. 13, pp. 461–469, Aug.
2008.

[5] Y. Yoon and D. Rus, “Shady3d: A robot that climbs 3d trusses,” in
Robotics and Automation, 2007 IEEE International Conference on,
pp. 4071–4076, IEEE Press, 2007.

[6] M. Mataric, N. Koenig, and D. Feil-Seifer, “Materials for enabling hands-
on robotics and STEM education,” in AAAI Spring Symposium on Robots
and Robot Venues: Resources for AI Education, AAAI Press, 2007.

[7] F. Mondada, G. C. Pettinaro, A. Guignard, I. Kwee, D. Floreano, J.-L.
Deneubourg, S. Nolfi, L. Gambardella, and M. Dorigo, “SWARM-BOT:
a New Distributed Robotic Concept,” Autonomous Robots, special Issue
on Swarm Robotics, vol. 17, no. 2–3, pp. 193–221, 2004.

[8] S. Magnenat, V. Longchamp, and F. Mondada, “Aseba, an event-
based middleware for distributed robot control,” in Workshops DVD
of International Conference on Intelligent Robots and Systems (IROS),
2007.

[9] S. Magnenat, B. Noris, and F. Mondada, “Aseba-challenge: an open-
source multiplayer introduction to mobile robots programming,” in
Proceedings of International conference on Fun and Games, Springer,
2008.

[10] S. Magnenat, P. Rétornaz, B. Noris, and F. Mondada, “Scripting the
swarm: event-based control of microcontroller-based robots,” in SIMPAR
2008 Workshop Proceedings, 2008.

[11] H. Durrant-Whyte, B. Rao, and H. Hu, “Toward a fully decentralized
architecture for multi-sensor data fusion,” in Robotics and Automation,
1990. Proceedings., 1990 IEEE International Conference on, pp. 1331–
1336, IEEE Press, May 1990.

[12] J. Gil, A. Pont, G. Benet, F. Blanes, and M. Martı́nez, “A CAN
Architecture for an Intelligent Mobile Robot,” in Proc. of SICICA-97,
pp. 65–70, 1997.

[13] I. Gravagne, J. Davis, J. Dacunha, and R. Marks, “Bandwidth reduction
for controller area networks using adaptive sampling,” in Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International
Conference on, vol. 5, pp. 5250–5255, April-1 May 2004.

[14] M. Szymanski and H. Worn, “Jamos - a mdl2ε based operating system
for swarm micro robotics,” in Swarm Intelligence Symposium, IEEE,
pp. 324–331, IEEE Press, 2007.

[15] Q. Mahmoud, ed., Middleware for Communications. Wiley, 2004.
[16] J. Luckham, D.C.; Vera, “An event-based architecture definition language,”

Software Engineering, IEEE Transactions on, vol. 21, pp. 717–734, 1995.
[17] P. R. Pietzuch and J. Bacon, “Hermes: A distributed event-based

middleware architecture,” in Proceedings of the 22nd International
Conference on Distributed Computing Systems, pp. 611–618, IEEE
Computer Society, 2002.

[18] M. Mizukawa, H. Matsuka, T. Koyama, and A. Matsumoto, “ORiN:
Open Robot Interface for the Network, a proposed standard,” Industrial
Robot: An International Journal, vol. 27, no. 5, pp. 344–350, 2000.

[19] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, “Miro -
middleware for mobile robot applications,” Robotics and Automation,
IEEE Transactions on, vol. 18, pp. 493–497, Aug 2002.

[20] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “Rt-
middleware: distributed component middleware for rt (robot technology),”
in International Conference on Intelligent Robots and Systems (IROS),
pp. 3933–3938, IEEE Press, 2005.

[21] M. Henning, “A new approach to object-oriented middleware,” Internet
Computing, IEEE, vol. 8, pp. 66–75, Jan–Feb 2004.

[22] H. Bruyninckx, “Open robot control software: the orocos project,” in
International Conference on Robotics and Automation (ICRA), pp. 2523–
2528, IEEE Press, 2001.

[23] L. Petersson, D. Austin, and H. Christensen, “DCA: A Distributed
Control Architecture for Robotics,” in Proc. of the IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS), pp. 2361–2368, IEEE Press,
2001.

[24] D. Simon, B. Espiau, K. Kapellos, and R. Pissard-Gibollet, “Orccad:
software engineering for real-time robotics: A technical insight,” Robotica,
vol. 15, pp. 111–115, 1997.

[25] W.-M. Shen and M. Yim, eds., Mechatronics, IEEE/ASME Transactions
on, special issue on self-reconfigurable robots. IEEE Press, 2002. vol 7,
issue 4.

[26] Y. Zhang, K. Roufas, and M. Yim, “Software architecture for modular
self-reconfigurable robots,” in Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on, pp. 2355–
2360, IEEE Press, 2001.

[27] R. A. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[28] E. Gat, “On three-layer architectures,” in Artificial Intelligence and
Mobile Robots (D. Kortenkamp, R. P. Bonnasso, and R. Murphy, eds.),
pp. 195–210, MIT/AAAI Press, 1997.

[29] I. Standards, Road Vehicles Interchange of Digital Information - Con-
troller Area Network - ISO 11898. International Organization for
Standardization, 1993.

[30] M. Bonani, S. Magnenat, P. Rétornaz, and F. Mondada, “The Hand-
bot, a Robot Design for Simultaneous Climbing and Manipulation,”
in Proceedings of the Second International Conference on Intelligent
Robotics and Applications (M. Xie et al., ed.), vol. 5928 of Lecture
Notes in Computer Science, pp. 11–22, Springer-Verlag, 2009.

[31] R. P. Loui, “In praise of scripting: Real programming pragmatism,”
Computer, vol. 41, no. 7, pp. 22–26, 2008.

[32] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson, “Arrows, robots,
and functional reactive programming,” in Summer School on Advanced
Functional Programming 2002, Oxford University, vol. 2638 of Lecture
Notes in Computer Science, pp. 159–187, Springer-Verlag, 2003.


	Introduction
	Related Work
	Aseba
	Distributed, Event-based Architectures
	Events and Control
	Language
	Integrated Development Environment
	Virtual Machines

	Application to Complex Mechatronics
	Application to a Miniature Modular Robot
	Bandwidth Reduction by Preprocessing
	Low Latency for Fast Reactions
	Virtual Machine

	Lessons Learned and Future Works
	Conclusion
	References

